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Abstract: A mobile robot is a futuristic technology that is changing the industry of automobiles as
well as boosting the operations of on-demand services and applications. The navigation capability
of mobile robots is a crucial task and one of the complex processes that guarantees moving from a
starting position to a destination. To prevent any potential incidents or accidents, navigation must
focus on the obstacle avoidance issue. This paper considers the navigation scenario of a mobile
robot with a finite number of motion types without global environmental information. In addition,
appropriate human decisions on motion types were collected in situations involving various obstacle
features, and the corresponding environmental information was also recorded with the human
decisions to establish a database. Further, an algorithm is proposed to train a neural network model
via supervising learning using the collected data to replicate the human decision-making process
under the same navigation scenario. The performance of the neural network-based decision-making
method was cross-validated using both training and testing data to show an accuracy level close to
90%. In addition, the trained neural network model was installed on a virtual mobile robot within a
mobile robot navigation simulator to interact with the environment and to make the decisions, and
the results showed the effectiveness and efficacy of the proposed algorithm.

Keywords: neural network; mobile robot navigation; obstacle avoidance

1. Introduction

The navigation problems of mobile robots require a method that can successfully
lead a robot to its target destination, and they are of key significance in industry [1]. For
example, in an intelligent warehouse, the goods are frequently carried or transported
by mobile robots from one position to another for storage management purposes. In
such a navigation problem, the feature of obstacle avoidance must be considered with
highest priority in the navigation algorithm design process, otherwise there may be serious
accidents, such as a collision between two mobile robots or another object. To address
these kinds of navigation problems, previous research has used various methods, such as
convex optimization [2], virtual and behavioral structures [3], model predictive control [4],
and reinforcement learning [5], to achieve an obstacle avoidance design target in practical
applications. For more details, please see the overview of navigation as well as obstacle
avoidance problems in [6–8].

The existing methods for navigation tasks may require a high computation load to
compute the desired path for the mobile robots or ensure they follow a predefined route [9].
However, these requirements are too high for the performance of existing equipment. For
instance, the microprocessors installed on the mobile robots may not have an efficient
enough computation load to determine the correct path in real time. In addition, the
limited choices of the predefined routes do not actually encourage cooperation between
multiple mobile robots, i.e., a quick vehicle behind a slower vehicle has to queue and wait
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in the same route, which is not efficient. Although the work in [10–12] has attempted to
overcome these concerns, the proposed algorithms were adhoc, and their applications were
restricted to the specific navigation tasks with convex shaped static obstacles or global
environmental information. An artificial potential field is considered an efficient method
for motion planning, but it runs the risk of falling into a local optimum.

This paper intends to deal with the class of navigation problems using obtained human
decision data from the aspect of artificial intelligence. As pointed out in [13], artificial
intelligence is considered as a technique aiming at replicating human behavior by making
inferences according to historical learned data. It usually establishes a neural network
model and tunes the parameters within this model using the obtained realistic data, so that
the trained model can provide useful information for the users [14]. As explained in [15],
this technique is particularly strong at making intelligent decisions for certain design
problems with variability, uncertainty, complexity, and fuzziness [16]. This advantage
enables its applications to many research fields, such as image recognition [17–19], data
analysis [20], system identification [21–23], and mechanical fault diagnosis [24]. Note that
most of the applications mentioned above deal with data using artificial intelligence, whose
structures and labels are both sparse. However, the data labels of the navigation problem
are not purely sparse, since one specific occasion can have multiple potential labels.

To solve this specific class of navigation problems using artificial intelligence, some
work has already been completed. The work in [25] employed the Q-learning method to
interact with a dynamic environment and limited the state number of its state space to
fulfill a navigation algorithm. In addition, it was reported in [26] that neural network-
based reinforcement learning was used to handle the navigation tasks with both static
and dynamic obstacles in an uncertain workspace. Deep reinforcement learning to solve
navigation problems is increasingly favored by researchers and has progressed since
2016 [27]. The exploration process is decomposed into decision-making, planning, and
mapping modules to increase the modularity of the robot system. In each framework, a
decision algorithm based on variant deep Q-learning (DQN) was proposed to learn and
explore strategies from local maps in [28]. An actor–critic model was trained to learn
navigation policy, and expert knowledge was utilized to generate subgoals in [29]. In [30],
a heuristic dynamic programming method was proposed to demonstrate a Markov decision
process during a maze navigation task, which included a goal network to model the reward.
The research in [31] developed an obstacle avoidance method using a fuzzy neural network
for wheeled mobile robots, which reduced the oscillation during obstacle avoidance and
achieved a smooth path. In [32], symbolic spatial information was employed to assist
robots to move in an unseen scene, which achieved good performance. Note that the
aforementioned methods all incorporated a relatively heavy real-time computation load
as a key component in their design framework, and it was difficult to set new plans when
receiving instantaneously a large amount of information. In [33], artificial and natural
landmark recognition-based simultaneous localization and mapping (SLAM) provided
absolute position feedback in real time to complete the task of robot localization and
modeling. For motion planning, a novel quadrupole potential field (QPF) approach was
used to realize collision-free path planning. However, the modeling environment based on
SLAM was time-consuming and had no ability to cope with real-time changes in scenarios,
which increased the difficulty of navigation without global environmental information.

To overcome the real-time computation issue in navigation problems, this paper
formulates a mobile robot navigation problem within a 2D plane with various shapes of
obstacles. It divides the motion behaviors of a given autonomous mobile robot system
into a finite number of motion types, and collects the environmental information (system
inputs) as well as appropriate decisions (labels) of these motion types made by human users
at various scenarios with random generated obstacles. These collected data are further
exploited to train a neural network model that is employed to replicate the decision-making
behavior of a human being. The trained model only responds to the real-time detected
environmental information and does not have to perform any optimization procedures. To



Appl. Sci. 2022, 12, 7796 3 of 17

determine the feasibility of this neural network based method, a simulator was established
in Python to present an exemplary mobile robot navigation task. The tuning procedures
using supervised learning were made on the structure of the neural network and the
parameters of the training algorithm to guarantee the high accuracy of this method with
respect to the training and testing data sets. To validate its performance, the trained model
was applied to the control system of the mobile robots in the simulator multiple times.
The resulting paths confirmed its ability to handle navigation tasks and achieve obstacle
avoidance as well. The scientific and technical contributions of this paper are highlighted
as follows:

• A autonomous mobile robot navigation problem was formulated with a finite number
of motion types, requirements on obstacle avoidance in 2D space, and no global
environmental information.

• An implementation algorithm is provided on how to process the obtained data and
train a neural network model using a supervised learning method to approach the
human decision-making process.

• A simulator was established in the Python programming environment to model
each step of an exemplary mobile robot navigation task with visualization outcomes,
and the human decision data were collected under the same navigation scenario of
the simulator.

• The proposed algorithm used the data collected from the human decision-making
process under the same navigation scenario to train a neural network model to achieve
high estimation accuracy rates.

• The trained neural network model was validated in the simulator to perform the required
task with the desired performance, which solves the real-time computation issue.

The nomenclature used in this paper is listed in Abbreviations part.

2. Problem Formulation

In this section, an autonomous mobile robot navigation task is first described, and then its
design objectives are given. Together, these form a navigation problem with obstacle avoidance.

2.1. Navigation Task Description

The task operation environment within a mobile robot system is a 2D plane with
random generated obstacles as shown in Figure 1, for example. In this figure, the red dot
and green dot are denoted as the start position (x0, y0) and the destination position (xd, yd)
in the 2D plane, respectively. This task requires the mobile robot to start from the red dot
and then reach the green dot without colliding with any obstacles. To perform this task, an
omnidirectional mobile robot with a state vector

s(t) = [x(t) y(t) θ(t)]> (1)

at each sample decision-making time index t is considered in this paper, where x(t) and
y(t) are the horizontal and vertical coordinates of the mobile robot, and θ(t) is the heading
direction of the mobile robot. The motion of this vehicle is conducted by a finite number
of motion typesMi, i = 1, . . . , n. Here, each motion type should be linked to an imple-
mentable action of the mobile robot, e.g., go ahead, turn left or turn right, and associate
with a particular state change function

s(t + 1) = Fi(s(t)), i = 1, . . . , n. (2)
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Figure 1. An exemplary operation environment of the mobile robot navigation task.

Since the motion function is simplified to motion types, it enables this task to be carried
out by sequentially making appropriate decisions of motion types at each sample time
index t. To help the achievement of the latter design, two assumptions are made as below.

Assumption 1. The motion types of this mobile robot guarantee it to reach any feasible position
within the given 2D plane.

Assumption 2. The motion types must differ significantly from each other, i.e., for a given state s,
there exists ∥∥Fi(s)−Fj(s)

∥∥ > σ, for any i, j, (3)

where σ is a nonnegative scalar.

Assumption 1 makes sense in practice, since it guarantees the mobile robot task
achievement, as there is no need to design any autonomous mobile robot navigation
approach for an impossible task. Assumption 2 ensures all motion types will be different,
which increases the success rate of classifying the appropriate motion type using a neural
network in Section 3.

2.2. Task Design Objective and Problem Definition

To interact with the external environment in the mobile robot system, various sensors
are installed on the mobile robot to detect real time useful information. This paper uses
the detection mechanism as shown in Figure 2 for visual representation, which means only
local environmental information is available. It enables the mobile robot to have a total
number of m laser distance sensors to detect whether there are any obstacles around it and
how far away the obstacle is from its current position, and this information is denoted as
di(t), i = 1, . . . , m.
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Figure 2. A visual example of the detected local environmental information of the mobile robot.

Note that the green lines in the figure are the laser beams, which will reflect after
touching an obstacle. These laser beams can detect the obstacles within a maximum distance
of dmax; hence, there exists 0 6 di(t) 6 dmax. Furthermore, a location sensor is incorporated
to calculate the bias of the heading direction, which is the red arrow in the figure, and is
denoted as φ(t) satisfying −180◦ < φ(t) 6 180◦.

In this sense, the design objective of the autonomous mobile robot navigation task is
to develop a mechanism, which makes the vehicle respond to the real time environmental
information in order to complete the task. The navigation problem discussed in this paper
is explained in the next definition.

Definition 1. The autonomous mobile robot navigation problem with obstacle avoidance
aims to make appropriate decisions of the given motion types based on the real-time detected
information di(t), i = 1, . . . , m and φ(t) at each sample time index t, such that the vehicle moves
from its start position (x0, y0) to a position (x∗, y∗) close to its destination position (xd, yd)
without colliding with any single obstacle, i.e.,∥∥∥(x∗, y∗)− (xd, yd)

∥∥∥ 6 ε, (4)

where ε is a small positive scalar determining an acceptable distance from the destination to complete
the navigation task.

The above definition articulates a nontrivial decision-making problem, which is not
deterministic or straightforward to solve. Therefore, this paper will employ the tools of
a neural network and supervised learning to address this problem in Section 3 in the
sense of replicating the human decision process using obtained data. Note that the human
decision-making process is the procedure where human drivers make the motion decisions
when in the same situation, i.e., with the same local information. In this process, the human
drivers would try their best to reach the destination via a relatively short path without
colliding with the surrounding obstacles.

3. Process for Training a Neural Network

This section describes the extraction of the useful information from the decisions made
by human beings in the identical scenario to the navigation problem in Definition 1. Then,
we formulate this problem into a supervised learning problem and exploit the information
to train a neural network model to replicate the learned human behavior in terms of
decision making using the recorded data.
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3.1. User Data Collection and Problem Reformulation

In the identical scenario to the navigation problem in Definition 1, human users were
asked to make a decision based on the observed scenes at each occasion. First of all, the
users were only able to observe the space within the detection range of the sensor, where
the distance between the robot and obstacles as well as the direction to the destination point
were provided. Then the users judged how the robot should move based on the known
information and controlled its movement to the next space through the keyboard. Note
that to reduce the correlation of each datum in time and space, the position and orientation
of the robot were randomly placed after performing an action. The decisions made by these
users were recorded for a total number of N occasions. On the j-th occasion, a set of labeled
data was generated and stored in a database Λ as

λj = [dj
1 dj

2 . . . dj
m φj l j], j = 1, . . . , N, (5)

where j is the occasion index number, dj
i , i = 1, . . . , m, are the obstacle distances detected by

the laser distance sensors, φj is the bias of the heading direction measured by the location
sensor, and l j is the label of human made decisionMi, i.e.,

l j ∈ {1 2... n}. (6)

To ensure the collected data were meaningful, an assumption was made as follows:

Assumption 3. The human users tried their best to achieve the given navigation task, and they
were capable of successively completing this task, i.e., they did not aim to make the mobile robot
collide with an obstacle or move toward the wrong destination.

Based on the above assumption, it is acknowledged that the navigation problem in
Definition 1 can be solved by a mechanism, which replicates the human decision-making
process. Therefore, using the stored labeled data, the navigation problem can be transform
into a classification task. As explained in [34], after obtaining the data set Λ, η elements
were randomly selected to form the training set Λtrain, and the rest were regarded as the test
set Λtest. An (m + 1)-input and n-output neural network model was employed to obtain
the probability of each navigation action, whose input was [di

1 di
2 . . . di

m φi] ∈ Rm+1 and
output was zi ∈ Rn. As a result, the robot navigation task was reformulated as a supervised
learning problem defined below.

Definition 2. The Navigation Decision-Making Problem is to iteratively update the parame-
ters of network model using the elements cut into the training set Λtrain from collected data, such
that the cross-entropy loss function

L(zi, ẑi) = −
n

∑
j=1

ẑi log zi(j), i = 1, . . . , N (7)

is minimized for all N labeled datasets, where ẑi ∈ Rn is the expected output defined by li as

ẑi(j) =

{
1, j = li,

0, else.
(8)

The cross-entropy loss function (7) was utilized to evaluate the loss between the output
of the neural network and the human behavior label. The weights of the neural network
were continuously adjusted to reduce the loss value through the error back-propagation
algorithm. When the cross entropy loss became small enough, the neural network model
was considered to completely fit the mapping relationship between input and output.
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3.2. Neural Network Structure

The structure of the neural network affects the final training results, so it should be
carefully and reasonably designed. The network was fully connected, as shown shown in
Figure 3. The input layer was composed of (m + 1) neurons, which was represented as
the vector

zin
0 = [di

1 di
2 . . . di

m φi]>. (9)

Figure 3. The structure of the neural network model.

Since the data values may vary in rather different ranges, a rescaling step was per-
formed at the input layer such that the output of the input layer was computed as the vector

zout
0 = [di

1/dmax di
2/dmax . . . di

m/dmax φi/360]>. (10)

This rescaling step adjusted the input values to a relatively similar level, overcoming
the potential slow convergence problem, which would occur at the large-scale dimension.

As shown in Figure 3, the model included k hidden layers in the dashed red box, and
the i-th hidden layer had ri units. The output of the i-th layer was a vector zout

i ∈ Rri and
was transferred to the input zin

i+1 ∈ Rri+1 of the (i + 1)-th layer as

zin
i+1 = Wi+1zout

i , (11)

where Wi+1 ∈ Rri+1×ri is a weight matrix. An activation function fi,j(·) was applied before
the network output of each layer, which is defined as

zout = fi,j(zin) = RReLU(zin + bi,j), (12)

where RReLU(·) is called a randomized rectified liner unit function defined as

RReLU(x) =

{
x, x > 0,

ax, else.
(13)

In Equation (13), coefficient a is randomly sampled from a uniform distribution. The
function RReLU(·) serves is that of a nonlinear factor to solve problems that cannot be
solved by linear models. Compared to other activation function such as Sigmoid, it saves
computation load during the backward updating process of the neural network.

The output corresponds to the possibility of each label, so the input vector of the
output layer zin

k+1 ∈ Rn is processed by

zout
k+1 = g(zin

k+1), (14)
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where g(·) is a softmax function defined as

g(x)i =
ex(i)

∑n
j=1 ex(j)

. (15)

3.3. A Supervised Learning Algorithm

Given the obtained data set, Definition 3.1 is transformed into a supervised learning
task, which is solved by Algorithm 1. Firstly, we determined the relevant parameters
of the supervised learning algorithm, such as learning rate, iteration times, batch size,
etc. Secondly, we randomly initialized the weights Wi and thresholds bi,j. Thirdly, to
balance memory efficiency and memory capacity, the training data set was divided into
several batches of elements. Fourthly, we started an iterative process in which the network
parameters were continuously updated until the loss value dropped to an acceptable value.

Algorithm 1 Training process for neural network model

Input: Collected human database Λ, cross entropy loss function (7), initial network weights
Wi and thresholds bi,j, total number of training data η, batch size nbatch, and iteration
epoch number nepoch.

Output: A trained model with Wi and bi,j.
1: initialization: Set training epoch number i = 1.
2: Randomly select η elements of Λ to a training set Λtrain and the rest to a testing set

Λtest.
3: Cut Λtrain into int(η/nbatch) batches of elements with batch size nbatch.
4: while i 6 nepoch do
5: for j 6 int(η/nbatch) do
6: Calculate the sum of the cross entropy loss (7) of all data in the j-th batch.
7: Compute the gradients of Wi and bi,j with respect to the obtained sum.
8: Perform Adaptive Moment Estimation (Adam) gradient descent training to update

Wi and bi,j according to loss back-propagation algorithm.
9: end for

10: Calculate the accuracy rates of the updated model in Λtrain and Λtest by Equation (16).
11: Set i = i + 1 to the next iteration.
12: end while
13: return The trained model with Wi and bi,j.

To evaluate the training effect of the neural network, the output accuracy of the
training network on Λtrain and Λtest were computed as

φtrain =
∑λ∈Λtrain

λacc

len(Λtrain)
, φtest =

∑λ∈Λtest λacc

len(Λtest)
, (16)

where λi is a mark used to determine whether the character corresponding to the maximum
value of neural network output was consistent with the label as

λacc
i =

{
1, arg max zi = li,

0, else.
(17)

Remark 1. Since the elements in testing set Λtest and the training set Λtrain are completely
independent of each other, the evaluation results are able to examine the training performance in
terms of overfitting problems.

4. Mobile Robot Simulator Platform

To validate the performance of Algorithm 1, a mobile robot simulator was developed
using the Pygame package in Python environment. This simulator can generate a 2D plane
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with random obstacles as that shown in Figure 1. It enables the vehicle to perform three
motion types, such as go straight ahead, rotate to the left, and rotate to the right, i.e., m = 3,
and the state change functions are defined as

F1(s(t)) = [x(t) + vm cos(θ(t)) y(t) + vm sin(θ(t)) θ(t)]>,
F2(s(t)) = [x(t) y(t) θ(t) + vr]>,
F3(s(t)) = [x(t) y(t) θ(t)− vr]>,

(18)

where vm is the motion speed, and vr is the rotation speed. Note that the values of vm and
vr can be customized in the configuration window of the simulator.

This simulator can generate various occasions with random obstacles and collect the
decisions made by the human test candidates, and an exemplary situation is shown in
Figure 4. As can be seen from this figure, there were 17 laser detectors, i.e., m = 17, installed
on the front half plane of the mobile robot. This simulator replicated a radar with 5 m
measuring distance, and each pixel in the screen denoted 0.01 m. Therefore, the maximum
detection distance was set as dmax = 500 in units of pixels. Since the laser detectors can
only measure the information in the front 180◦ direction, the bottom half of the circular
sight in this figure was covered when recording the human user’s decisions to provide a
fair navigation environment. The color ci of the i-th laser beam followed the mechanism

ci =


Green, 0.6dmax < di 6 dmax,

Yellow, 0.3dmax < di 6 0.6dmax,

Red, 0 < di 6 0.3dmax,

(19)

which alerted the human test candidates to potential nearby obstacles. Note that only a
circular sight is shown in Figure 4, and it represents the exact region the mobile robot could
detect using its laser sensors. The obtained decisions were recorded as the label li, using
the reference equation

li =


0, Go ahead,

1, Rotate to left,

2, Rotate to right.

(20)

Figure 4. A straightforward example of user data collection.

The obtained labels were saved in the database together with the corresponding environ-
mental information di, i = 1, . . . , 17 and φi, which formed a complete labeled element.
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Remark 2. The generated occasions only provide the human test candidates with the exact in-
formation that the mobile robot can have. Therefore, with both having the same scope of obtained
environmental information, a neural network model can be trained to replicate the human decision-
making process in a fair manner.

Remark 3. This simulator is capable of accurately modeling a navigation task in a 2D plane with
random obstacles, and each human labeling process can be completed within 1 s. However, while
using the automated algorithms, e.g., reinforcement learning, on a similar experimental established
test platform in practice, it took time to build a limited range of real navigation scenarios. The
mobile robot should not move too fast, i.e., less than 0.2 m/s, to avoid safety issues, which means
they might take more than 10 s to obtain useful data. Therefore, the human labeling approach using
this simulator has the advantages of data collection speed and data diversity.

Remark 4. Note that the algorithm performance was affected by the number m of laser sensors, as
the knowledge of the surrounding environmental information definitely increases with more sensors.
In this sense, more detailed information helps the neural network to make more appropriate decisions.
However, the implementation space of sensors is restricted on a remote robot, which means the
number m cannot be too large.

5. Numerical Simulation Results

This section describes the performance of Algorithm 1 to train a neural network
model based on the collected labeled data obtained from the simulator. The trained model
was applied to the mobile robot to serve its navigation module in the simulator, and the
corresponding results are presented and discussed.

5.1. Design Parameter Specifications

The parameter setting in Algorithm 1 directly determines whether the ideal network
model can be obtained. In this paper, the model was specified as a five-layer fully connected
neural network, and the neuron numbers within each hidden layer were set as

r1 = 64, r2 = 128, r3 = 64, r4 = 32, r5 = 8, (21)

respectively. Theoretically, deepening the neural network improves the training effect, but
it consumes more computing resources and increases the risk of overfitting. As shown
in Figure 5a, net2 and net3 deepened the number of layers and increased the number of
neurons in a certain layer on the basis of net1, but their accuracy in the test set was not
improved or even reduced, and the time required for training increased. Therefore, it was
considered appropriate to set the neural network to 5 layers. The learning rate determines
the convergence speed of neural network, which has a great impact on the training of
neural network. Too small a learning rate leads to the slow convergence speed of the neural
network and increased training time while too large a learning rate results in missing the
optimal solution. As shown in Figure 5b, setting the learning rate to 0.0008 was considered
to be a suitable scheme that accounted for both the training speed and the optimal solution.
Furthermore, the batch size and the total number of iterations were selected as

nbatch = 10, nepoch = 1000, (22)

which affected the total time spent in the whole training process. During the data collection
phase, 800 labeled elements were collected into data set Λ, and 640 were randomly extracted
to generate the training set Λtrain, i.e., η = 640.
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(a) (b)

Figure 5. Different layers, neurons, and learning rates affect the accuracy of the neural network
replicating human decision-making process. (a) neural network; (b) learning rate.

5.2. Training Performance Analysis

The accuracy rate is an index to judge the ability of the neural network to replicate
human behavior. Therefore, the accuracy rate in Λtrain and Λtest was calculated by (16)
and (17) at the end of each iteration, as shown in Figure 6. The accuracy increased with
the number of iterations and tended to be stable after 900 epochs, which proves that the
network parameters were continuously updated and finally converged. The accuracy rate
in Λtrain exceeded 90% while it reached 85% in Λtest, which confirmed that the trained
model was theoretically capable of making a decision similar to a human being based on the
input information. Other alternative design parameter specifications were also tested and
the final estimation accuracy rates were either lower than or similar to the above results.
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Figure 6. The estimation accuracy rates of Algorithm 1 with respect to Λtrain and Λtest along the
training epochs.

To determine why the accuracy rate could not further increase, the dimensionality
reduction method called t-Distributed Stochastic Neighbor Embedding (t-SNE) was applied
to convert the high dimensional elements λi in the database Λ into a 2D plane for a
straightforward point of view. The results are shown in Figure 7, and it is clear that the data
points in some particular regions had more than one label. Therefore, the data structure
was not sparse enough to allow the trained model to reach a high estimation accuracy, and
it was difficult fo the model to identify the data type in those regions. This is due to the fact
that there inevitably exist some occasions in which the human test candidates cannot make
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deterministic decisions. Therefore, the obtained performance of Algorithm 1 is acceptable
in the autonomous mobile robot navigation scenario.

Figure 7. 2D plot of input data with marked labels using t-SNE.

5.3. Verification on the Simulator

Once the neural network converged, the decision model of the mobile robot was
determined, which will not change with respect to propagation of scene and time. To
validate its actual performance, the trained neural network model was applied to the
autonomous mobile robot navigation task in the simulator. The simulator randomly
generated a 2D plane with obstacles and selected the start and destination positions, which
are marked as red and green dots in Figure 8. At each sample time index t, the measured
obstacle distance di(t), i = 1, . . . , 17 and heading direction bias φi were sent to the trained
model to generate the probabilities of each motion typeMi at t, which was exactly the
output of the model. Based on the obtained probabilities, the decision of the motion type
was computed and the mobile robot changed its state according to (18) in the simulator
test environment.

To evaluate the real-time performance of the neural network model, it was loaded
onto a laptop with “AMD Ryzen7 5800H” CPU and “NVIDIA GeForce RTX 3060” GPU
to obtain the time consumed by each decision as shown in Table 1. Note that the total
time was consumed by the process of the model outputting an executed action based on
the input information obtained. In Table 1, a total number of 5 navigation tasks were
considered, where the time consumed by the model at 6 moments was randomly selected
to compute the average time spent on executing an action. The neural network model took
only approximately 1 millisecond to make a decision. In the simulator, the mobile robot’s
state was represented by its pose (x(t), y(t), θ(t)). Hence, the neural network performed
real-time computation to choose a motion type based on acquired data, and a new state
was obtained after executing an action. Connecting the coordinates of all occasions, a path
from the starting point to the destination point was formed.

Table 1. Consumed time to output an action by the model.

Number Consumed Time (s)
a1 a2 a3 a4 a5 a6 Average

1 0.00123 0.00100 0.00100 0.00100 0.00119 0.00100 0.00107
2 0.00100 0.00099 0.00100 0.00099 0.00100 0.00100 0.00100
3 0.00100 0.00099 0.00200 0.00100 0.00100 0.00100 0.001165
4 0.00100 0.00100 0.00100 0.00099 0.00100 0.00100 0.00100
5 0.00100 0.00100 0.00100 0.00200 0.00099 0.00100 0.001165
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(a) (b)

(c) (d)

Figure 8. The paths of the mobile robot while performing navigation tasks using the trained neural
network model in the simulator. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.

The paths of the mobile robot in some exemplary cases are shown in Figure 8. The
results demonstrate the appealing properties of the neural network based navigation
method proposed in this paper, in that the mobile robot could arrive at the destination
without colliding with any obstacles. The navigation performance in other cases was similar
to those in Figure 8. Note that all the robot knows at a certain position is sensor information,
so that it has no ability to make the optimal decision as in other global planning methods.
However, compared with other approaches, the proposed method did not consume high
computing resources to obtain the global environment information and was capable of
responding to dynamic changes in time. As shown in Figure 8a,c,d, although the path is
not the shortest, the robot safely moved from the starting point to the destination position
through its own adjustment ability.

The neural network was employed to replicate human behavior, but the planned paths
shown in Figure 8 seemed not to conform to human thinking in theory. This is mainly due
to two reasons: on the one hand, people usually combine the entire scene map to judge
the integral path from a global perspective. However, when the information available to
humans is reduced to a local area, the decision made is similar to the neural network. On
the other hand, humans utilize the brain’s memory to assist in decision making, which
is unavailable to the neural network proposed in this paper. This limitation may cause
the robot to spin around in a certain area. Note that the spinning of the robot as shown in
Figure 8c is a local optimum caused by the proposed method. However, since the choice of
action conforms to the probability distribution output by the neural network, the robot may
choose another action at the same location, which helps it out of the current predicament.

5.4. Discussion

To show the effectiveness of the proposed algorithm in autonomous mobile robot
navigation, it was compared with the artificial potential field (APF) method commonly
used in a 2D environment, which usually forms a shorter path. As shown in Figure 9a,b,
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the path that is formed by Algorithm 1 proposed in this paper was only slightly longer
than the path obtained by the artificial potential field method in the second half without
knowing the global environment information, but the generated path was smoother than
that of the APF method. Furthermore, the APF method has the probability to fall into
the local minimum solution as shown in Figure 9c, while the method based on the neural
network is capable of bypassing obstacles of various shapes ahead, as shown in Figure 9d.

(a) (b)

(c) (d)

Figure 9. The paths of the mobile robot while performing navigation tasks using the trained neural
network model in the simulator. (a) APF; (b) proposed; (c) APF; (d) proposed.

Meanwhile, the dynamic window approach (DWA) is a classic local path planning
algorithm. When the robot reaches a certain position, DWA predicts the trajectory of each
set of speeds in a limited dynamic window and gives a speed evaluation, and the set of
speeds with the highest evaluation is selected as the current speed for execution. Finally,
the path planning is transformed into the problem of maximizing the objective function,
but real-time computing consumes high computing resources, around 100 times more than
the proposed algorithm. Compared to the DWA, the advantage of the method proposed
in this paper is that the computation required for neural network training is offloaded to
the computer to reduce the requirement on the robotic hardware. When the network is
transplanted to the robot, it only needs to perform a few matrix operations to obtain the
corresponding action.

6. Conclusions and Future Work

This paper employed a neural network model to address the class of autonomous
mobile robot navigation problems in mobile robot systems with the existence of obstacles.
It focused on the scenario where the mobile robot only had a finite number of motion types
and no global environmental information. Human-made decisions on these motion types
can be collected together with the corresponding environmental information on various
occasions including random generated obstacles. In this sense, the supervised learning
method was employed to yield an algorithm to train a neural network model to replicate the
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human decision process using recorded data. To validate the performance of the proposed
algorithm and the trained model, a mobile robot simulator was developed to collect the
data from the human decision process as well as perform a representative navigation task in
a 2D plane. The simulation results illustrated that a high estimation accuracy rate of nearly
90% with respect to the human decision-making process was obtained using the proposed
algorithm, and the trained model successfully completed the given tasks. Compared with
the APF method, the neural network approach was able to handle the navigation task with
obstacles without the local minimum problem, which proves the effectiveness of neural
network decision.

For future work, the trained model will be applied to an experimental test platform
to further examine its practical performance, and the iterative learning control method
in [35–37] can be implemented to guarantee the practical performance of the repetitive
motion types. It is undeniable that the neural network only considers the current state of the
robot for decision making, which leads to the certainty of global judgment. A navigation
algorithm with a short memory will be considered to be applied to further improve its
performance to handle the circular motion problem as shown in Figure 8c. Meanwhile,
reinforcement learning methods can be employed to let the robot train itself by gaining a
reward when approaching the destination or receiving punishment when colliding with an
obstacle. Last but not least, the proposed method can be extended to a distributed version
to handle the navigation task consisting of a number of mobile robots.
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Abbreviations
The following abbreviations are used in this manuscript:

Abbreviations Description
CUDA Compute unified device architecture
GPU Graphics processing unit
t-SNE t-Distributed Stochastic Neighbor Embedding
Symbols Description
Rn is an n-dimensional Euclidean vector space
Rm×n is an m× n real matrix space
Mi is the i-th motion type of a mobile robot
Fi(·) is the i-th state change function of a mobile robot
L(·) is the cross entropy loss function
t is the sample decision-making time index
Λtrain is the training data set
Λtest is the testing data set
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